Méthodes numériques avancées en Mécanique non linéaire

- Pierre Verpeaux CEA Saclay
- Objet du cours
 - Problèmes non linéaires en milieu industriel
 - Problèmes et techniques dans CASTEM
 - Limité à l'analyse statique et quasi statique
 - Méthode implicite Équilibre à la fin du pas
 - Avancé : appliquer les techniques la où elles ne s'appliquent pas

La mécanique au CEA

- Essentiellement sûreté des installations
- Pas le dimensionnement usuel
- Tenue ultime des structures
- Durée de vie, vieillissement
- Thermomécanique
- Enveloppe des solutions

La mécanique au CEA (suite)

- Importante validation expérimentale
 - Comportement élémentaire
 - Aspect structuraux : adhérence fer béton, conditions aux limites
 - Méthodes numériques
- Limites de la validation
 - Faisabilité (dimension, temps)
 - Reproductibilité

Critères de qualité des méthodes et logiciels

- Exactitude des résultats!
- Invariance au maillage (et convergence)
- Invariance à l'application du chargement
- Stabilité vis à vis des petites perturbations (géométrie, comportement)
- Enveloppe du problème

Existence et unicité des solutions

- Le problème physique a une solution unique On doit la trouver.
- Remarques
 - Pas toujours de solution unique au problème physique : perte de symétrie, flambage
 - Parfois pas de solution : rupture

Existence et unicité (suite)

- Le modèle de comportement n'est pas la réalité milieu continu, homogénéisation...
- La méthode numérique approche le modèle théorique
- Le problème discrétisé est différent du problème continu (espace et temps)
- Conditionnement, erreurs d'arrondi ...

Plan général

- Introduction, non linéarités, champs
- Algorithmes et méthodes
- Contact Frottement
- Thermomécanique
- Non convergence

Définition du problème

- Structure S
- Comportement Comp
- Chargement F
- Conditions aux limites Cl
- Trouver l'état de la structure en équilibre
 - Déplacement
 - Variables internes

Équilibre

- Div(σ) =F
- $F = B\sigma$ compte tenu Cl
- $\sigma = \text{comp}(\varepsilon, p, ??????)$
- $\varepsilon = (\operatorname{grad}(u) + \operatorname{grad}(u^t))/2$
- $\varepsilon = B^t u$
- Élastique linéaire : σ=Dε
- F=BDB^t u F=Ku

Conditions aux limites

- Dirichlet : u imposé
- Von Neumann : grad(u) imposé, c-a-d F imposé
- Mixte: αu + βgrad(u) imposé
 - Condition échange en thermique
 - Décomposition de domaine

Non linéarités

- Comportement
 - $-\sigma = \text{Comp}(\varepsilon, p, \text{ paramètres de contrôle})$
 - Ajout ou enlèvement de matière
- Géométrique
 - $-d\varepsilon = du / L$ $L = L_0 + du$
 - $\varepsilon = u + \frac{1}{2} u^2$
 - Flambage, grand déplacement

Non linéarités (suite)

- Chargement F
 - Pression suiveuse
 - Forces d'inertie (structure en rotation)
 - Forces électromagnétiques
- Conditions aux limites
 - Contact
 - Frottement

Non linéarité chargement

- Pression suiveuse tuyauterie, cuve, aube
 - -F = PN
 - Nécessaire pour analyse de stabilité
- Forces d'inerties dans un repère tournant
 - Calcul de turbine, arbres, alternateur
- Thermique
 - Température dépendant de la position
 - Coefficient d'échange dépendant pression

Non linéarités géométriques

- Calcul de corde
- Flambage
- Striction (diminution de la section)

Non linéarités CL

- Contact (formulation statique)
- $u > u_0$
- $u = u_0$ et $F_r > 0$
 - Cohésion $F_r > -F_c$

Non linéarité CL (suite)

- Frottement
- $u_t = 0$ et $F_t < F_{lim}$
- $u_t > 0$ et $F_t = F_{lim}$
- Loi de Coulomb : $F_{lim} = \mu F_n$
- Adhérence $F_{lim} = \mu F_n + F_{adh}$
- Dépendance possible en vitesse

Non linéarité CL (thermique)

- Rayonnement
 - Cavité $Q = k (T_1 T_2)^4$
 - Obstacle (mobile)

Non linéarités matériau

- Dépendance de matériaux
- Élasticité non linéaire
- Plasticité
- Viscoélasticité et viscoplasticité
- Endommagement
- Fatigue
- Bétons sols exotique

Dépendance des matériaux

- Propriétés fonction de
 - Température
 - Irradiation
 - Chimie, changement de phase
 - Champ magnétique
 - Vieillissement
 - Hygrométrie

Élasticité non linéaire

- Élastomère, Bois
- Même trajet Charge Décharge
- Pas de dissipation
- Existence d'un potentiel
- Énergie de déformation

Plasticité

- Métaux ferreux
- Limite élastique
- Décharge élastique
- Critère de plasticité
 - Von Mises 2ème invariant déviateur des contraintes
 - Tresca max $(\sigma_i \sigma_k)$
- Écrouissage : Isotrope, cinématique
- Loi d'écoulement normal, non associé

Viscoélasticité - Viscoplasticité

- État du matériau évolue avec le temps. Contraintes Déformations
- Fluage. Contrainte constante, déformation augmente.
 - Guimauve
 - Inox 316
 - Haute température

Visco (suite)

Modèle de Maxwell

Modèle de Kelvin

- Souvent couplé à la plasticité.
 Indépendance?
- Méthode : enlever déformations visqueuses avant (ou après) appliquer le comportement.

Endommagement

- Métaux composites céramiques
- Plasticité + changement caractéristiques élastiques.
- Croissance des cavités dans le matériau associée (ou non) à de la plasticité
- Situation ultime ($\varepsilon > 10\%$)

Fatigue

- Alliage légers, Inox
- Vieillissement du matériau en fonction du nombre et de l'intensité des cycles
- Effet : diminue la capacité de déformation
- Méthode : modification des propriétés du matériau établies à partir d'essais
- Courbe cyclique

Béton - Sol

- Matériau fragile. Résistance en traction faible (3MPa)
- Modes endommagement multiples
 - Rupture en traction
 - Endommagement, rupture en cisaillement
 - Endommagement en porosité
- Couplage hygrométrie
- Vieillissement
- Modèle multicritères
- Béton armé, adhérence fer béton

Transparent annulé

Plasticité - Écoulement

- Retour radial
- Problème : connaissant état initial + $\Delta\epsilon$ trouver $\Delta\sigma$
- Critère $F(\sigma, p, \ldots)$
- $\sigma_t = D \Delta \varepsilon + \sigma$
- Évaluation $F(\sigma_t)$
- Si $F(\sigma_t) < 0$ alors décharge élastique $\sigma_n = \sigma_t$

Écoulement (suite)

• Si $F(\sigma_t) > 0$ on veut trouver σ_n tel que: $-F(\sigma_n, p_n, ...) = 0$ et $\sigma_t - \sigma_n = \Delta p \frac{\partial F}{\partial \sigma}$

$$- F(\sigma_{n}, p_{n}, ...) = 0 \text{ et } \sigma_{t} - \sigma_{n} = \Delta p \frac{\partial F}{\partial \sigma}$$

$$F(\sigma_{n}, p_{n}) = F(\sigma_{t}, p) + \Delta p \frac{\partial F}{\partial p} + (\sigma_{n} - \sigma_{t}) \frac{\partial F}{\partial \sigma}$$

$$F(\sigma_{n}, p_{n}) = F(\sigma_{t}, p) + \Delta p \frac{\partial F}{\partial p} - \Delta p \left(\frac{\partial F}{\partial \sigma}\right)^{T} \left(\frac{\partial F}{\partial \sigma}\right)$$

Plasticité et unicité

- Pour un état de déformation, infinité états de contraintes possibles
- Minimisation de la dissipation
- Influence histoire du chargement

Multicritère

- $F_1(\sigma, p_1,...)$
- $F_2(\sigma,p_2,\ldots)$
- $\sigma_T = \sigma + D\Delta \epsilon$ \geq $F_1 < 0$ et $F_2 < 0 \implies OK$ décharge élastique $F_1 \geq 0$ et $F_2 < 0$ ou $F_1 < 0$ et $F_2 \geq 0$ écoulement sur un critère seulement

Multicritère (suite)

• Si $F_1 \ge 0$ et $F_2 \ge 0$ on cherche

$$\begin{split} F_1(\sigma_n\,,\,p_{1n}\,,\,\ldots) &= 0 \\ F_2(\sigma_n\,,\,p_{2n}\,,\,\ldots) &= 0 \\ \sigma_t - \sigma_n &= \Delta p_1 \frac{\partial F_1}{\partial \sigma} + \Delta p_2 \frac{\partial F_2}{\partial \sigma} \end{split}$$

$$F_{1}(\sigma_{n}, p_{1n}) = F_{1}(\sigma_{t}, p_{1}) + \Delta p_{1} \frac{\partial F_{1}}{\partial p_{1}} - \Delta p_{1} \left(\frac{\partial F_{1}}{\partial \sigma}\right)^{T} \left(\frac{\partial F_{1}}{\partial \sigma}\right) - \Delta p_{2} \left(\frac{\partial F_{1}}{\partial \sigma}\right)^{T} \left(\frac{\partial F_{2}}{\partial \sigma}\right)$$

$$F_{2}(\sigma_{n}, p_{2n}) = F_{2}(\sigma_{t}, p_{2}) + \Delta p_{2} \frac{\partial F_{2}}{\partial p_{2}} - \Delta p_{1} \left(\frac{\partial F_{2}}{\partial \sigma}\right)^{T} \left(\frac{\partial F_{1}}{\partial \sigma}\right) - \Delta p_{2} \left(\frac{\partial F_{2}}{\partial \sigma}\right)^{T} \left(\frac{\partial F_{2}}{\partial \sigma}\right)$$

Multicritère (suite 2)

- $F_1 = 0$ et $F_2 = 0$ $\rightarrow \Delta p_1$ et Δp_2
- Si $\Delta p_1 > 0$ et $\Delta p_2 > 0$ Écoulement sur les 2 modes
- Si $\Delta p_1 > 0$ et $\Delta p_2 < 0$ Écoulement sur 1
- Si $\Delta p_1 < 0$ et $\Delta p_2 > 0$ Écoulement sur 2

Multicritère (remarques)

- Si pas écrouissage : cône des normales
 - Si F₁ F₂ convexe unicité de la solution
- Si écrouissage positif cône entre obliques
 - Domaine de couplage plus important
 - Unicité possible même si F₁ F₂ concave
- Si écrouissage négatif cône entre obliques
 - Domaine de couplage moins important
 - Non unicité possible même si F₁ F₂ convexe

Multicritères (fin)

- En théorie pas plus de 6 critères activés
- Incrément fini plus de 6 critères
 - Essayer toutes les solutions
 - Solution correcte $\Leftrightarrow \Delta p_i > 0$
 - Possibilité plusieurs solutions
- Remarque : Le couplage de modes est une situation stable

Fissuration

- Critère en traction sur les contraintes principales
 - Avant fissuration
 - $F = -\sigma_{lim} + max \sigma_{principale}$
 - Après fissuration
 - On conserve la direction de fissuration
 - $F_1 = \sigma_1$
 - Possibilité fissuration orthogonale

$$-F_2 = -\sigma_{lim} + max (\sigma_2, \sigma_3)$$

Possibilité régularisation

Champs dans Castem

- Champs définis aux nœuds du maillage
 - CHAMPOINT
- Champs définis dans les éléments
 - CHAMELEM

CHAMPOINT

Discrets

- Forces, chaleurs
- S'additionnent lors de l'union de 2 champs

Diffus

- Déplacements, températures
- Peuvent s'unir si ils sont égaux sur la partie commune

CHAMELEM

- Champs définis dans l'élément
- Discontinus entre éléments
- Définis sur un support
 - Centre de gravité ⇔champ constant
 - Nœuds ⇔Force nodales équivalentes
 - Points d'intégration des fonctions interpolations
 ⇔ σ, variables internes

Champs liés au comportement

- Définis aux points d'intégration
 - Calcul des contraintes aux points d'intégration
 - En élastique linéaire plus précis
- Écoulement en ces points
- Variables internes conservées en ces points
- Problème:
 - Incompatibilité possible avec fonction interpolation
 - Impossibilité vérifier interpolation et comportement
 - Possibilité approche minimisation globale sur élément
 - Écriture différente chaque couple élément-modèle

Changement de support

- Contraintes aux points d'intégration
- Besoin contraintes aux nœuds pour posttraitements : graphiques et critères
- Température aux nœuds en thermique
- Besoin aux points intégrations pour calcul comportement
- Nécessité changement de support

Contraintes dans un barreau

- Température parabolique dans SEG3 (3 points intégration)
- $\varepsilon_{th} = \alpha T \rightarrow \sigma_{th} = \Delta \varepsilon_{th} \rightarrow F_{th} = B \sigma_{th}$
- $Ku=F_{th} \rightarrow \varepsilon=Bu \rightarrow \sigma=D(\varepsilon-\varepsilon_{th})$
- Problème : ε linéaire ε_{th} parabolique
- • contraintes non nulles en dilatation libre

Changement de support (Méthode)

- Passage Nœuds → points intégrations
 - Fonctions interpolations
- Passage points intégrations

 Nœuds
 - Recherche valeurs aux nœuds qui minimisent
 l'écart aux points de Gauss
 - $X = \sum n_i X_i$ • Minimisation de : $\sum_{pt \text{ int}} p_j Jac(j) |x_{int} - x_j|$

Changement de support (suite)

• Minimisation de : $\sum_{j} p_{j} Jac(j) \left(\sum_{i} n_{i}(j) X_{i} - x_{j} \right)^{2}$

$$\frac{\partial}{\partial X_k} = 0 \Rightarrow \sum_{j} p_j Jac(j) \left(\sum_{i} n_i(j) X_i - X_j \right) n_k(j) = 0$$

Système d'équations linéaires à résoudre

Changement de support (fin)

- Si nb nœuds = nb pts intégration
 - 1 solution exacte
- Si nb nœuds < nb pts intégration
 - Solution mais interpolation # valeurs initiales
- Si nb nœuds > nb pts intégration
 - Infinité de solutions
 - Ajout de contraintes
 - Exemple nœud milieu = moyenne nœuds sommets

Projection de champ d'un maillage sur un autre

- Même principe que changement de support
- Minimisation écart entre champ cherché inconnu et champ initial
- Champ définis à partir des valeurs aux nœuds
- Champ initial : $X = \sum N_i X_i$
- Champ projeté : $X = \sum n_i x_i$

Projection de champ

• Minimisation
$$\int |X - x|$$

$$\frac{\partial}{\partial X_k} \qquad \int \left(\sum_i N_i X_i - \sum_j n_j x_j\right)^2$$

$$\int N_k \left(\sum_i N_i X_i - \sum_j n_j x_j\right) = 0$$

$$\sum_i \int (N_k N_i) X_i - \sum_i \int (N_k n_j) x_j = 0$$

Projection de champs (suite)

• Calculs des intégrales par intégration numérique

$$\sum_{i} \sum_{m} p_{m} Jac_{m} (N_{k} N_{i}) X_{i} - \sum_{i} \sum_{m} p_{m} Jac_{m} (N_{k} n_{i}) x_{i} = 0$$

- Résolution système linéaire portant sur toute la structure
- Possibilité contrainte supplémentaire
 - Ex : x = 0 frontière
 - $X < X_{max}$